by Gar Smith
As Hurricane Sandy barreled towards the Northeastern US, 60 million coastal and inland residents suddenly found themselves in the crosshairs of climate change. Large enough to hammer the eastern third of the country with record-breaking winds, rain and floods, the Halloween Hurricane packed an unprecedented punch—it was set to collide head-on with a massive blizzard storming in from the northwest.
[…]
A History of Weather-related Near MissesEven without Fukushima-scale temblors and tsunamis, reactors remain surprisingly vulnerable to major storms.
In 1992, Hurricane Andrew slammed into Florida’s Turkey Point reactor near Miami, forcing the plant to rely on its emergency power generators. When the plant came dangerously close to running out of diesel fuel, Turkey Point’s operators had to commandeer fuel from nearby hospitals to keep the generators running and prevent a meltdown.
In June 1998, Ohio’s Davis-Besse reactor was hit by a tornado that cut the plant off from the electric grid. Emergency generators kicked in, but the power outage lasted so long that the generators nearly failed. Without emergency cooling, the spent fuel in the facility’s on-site storage pools could have overheated, leading to a potential ignition and massive radiation release. Fortunately, outside power was restored shortly before the emergency generators would have run out of fuel.
In 2005, Hurricane Katrina forced the shutdown of the Waterford nuclear plant in Louisiana and storm-related flooding along the Mississippi scuttled the state’s River Bend reactor.
In 2010, a tornado took down the power grid near Monroe, Michigan, damaging the 1,140-megawatt Fermi 2, and leaving the largest Fukushima-style Mark 1 reactor on earth without access to outside power needed to continue running emergency generators. Fermi’s storage pool contains more high-level waste than the four damaged Fukushima reactors combined.
In August 2011, 14 nuclear plants from Maryland to New Hampshire were put under an NRC storm watch as Hurricane Irene approached. The 2,1110 MW Millstone plant in Connecticut and the Brunswick plant on the North Carolina coast were both forced to power-down. In New Jersey, the Oyster Creek reactor went off-line. The worst damage was recorded at Maryland’s Calvert Cliff plant, where the Unit 1 reactor was forced into automatic shutdown when a transformer was damaged by flying aluminum siding ripped loose by the storm.
US storm watchers predict Hurricane Sandy could cut power to 10 million Americans for a week to ten days. If outside electricity fails, nuclear reactors must rely on emergency cooling systems to prevent a meltdown. The generators providing this protection typically have no more than a week’s supply of diesel fuel on site—insufficient to ride out a blackout lasting ten days.
[…]
The Hidden Risk of Inland TsunamisThe United States has recently seen how reactors can be threatened by “inland tsunamis” released by extreme storms that cause rivers to overflow. In the US, 64 reactors sit near rivers or reservoirs that are prone to flooding. In the 1990s, flooding on the Missouri River caused the loss of emergency backup systems at Nebraska’s Cooper plant. Similar flooding along the Mississippi damaged emergency systems at the Prairie Island reactor in Minnesota.
Continue reading at Frankenstorms and the Fukushima Factor