The next ‘Great Tide’ via Beyond Nuclear International

Exposed to rising tides and storm surges, Britain’s nuclear plants stand in harm’s way

By Andrew Blowers

It was now that wind and sea in concert leaped forward to their triumph.’
Hilda Grieve: The Great Tide: The Story of the 1953 Flood Disaster in Essex. County Council of Essex, 1959 

The Great Tide of 31 January/1 February 1953 swept down the east coast of England, carrying death and destruction in its wake. Communities were unaware and unprepared as disaster struck in the middle of the night, drowning over 300 in England, in poor and vulnerable communities such as Jaywick and Canvey Island on the exposed and low-lying Essex coast. 

[…]

Since that largely unremembered disaster, flood defences, communications and emergency response systems have been put in place all along the east coast of England, although it will only be a matter of time before the sea reclaims some low-lying areas. 

Among the most prominent infrastructure on the East Anglian coast are the nuclear power stations at Sizewell in Suffolk and Bradwell in Essex, constructed and operated in the decades following the Great Tide. 

Sizewell A (capacity 0.25 gigawatts), one of the early Magnox stations, operated for over 40 years, from 1966 to 2006. Sizewell B (capacity 1.25 gigawatts), the only operating pressurised water reactor in the UK, was commissioned in 1995 and is currently expected to continue operating until 2055. 

Further down the coast, Bradwell (0.25 gigawatts) was one of the first (Magnox) nuclear stations in the UK and operated for 40 years from 1962 to 2002, becoming, in 2018, the first to be decommissioned and enter into ‘care and maintenance’. 

These and other nuclear stations around our coast were conceived and constructed long before climate change became a political issue. And yet the Magnox stations with their radioactive graphite cores and intermediate-level waste stores will remain on site until at least the end of the century. 

Meanwhile, Sizewell B, with its highly radioactive spent fuel store, will extend well into the next. Inevitably, then, the legacy of nuclear power will be exposed on coasts highly vulnerable to the increasing sea levels and the storm surges, coastal erosion and flooding that accelerating global warming portends. 

Managing this legacy will be difficult enough. Yet it is proposed to compound the problem by building two gargantuan new power stations on these sites, Sizewell C (capacity 3.3 gigawatts) and Bradwell B (2.3 gigawatts) to provide the low-carbon, ‘firm’ (i.e. consistent-supply) component of the energy mix seen as necessary to ‘keep the lights on’ and help save the planet from global warming. 

But these stations will be operating until late in the century, and their wastes, including spent fuel, will have to be managed on site for decades after shutdown. It is impossible to foresee how any form of managed adaptation can be credibly sustained during the next century when conditions at these sites are unknowable. 

New nuclear power is presented as an integral part of the solution to climate change. But the ‘nuclear renaissance’ is faltering on several fronts. It is unable to secure the investment, unable to achieve timely deployment, unable to compete with much cheaper renewables, and unable to allay concerns about security risks, accidents, health impacts, environmental damage, and the long-term management of its dangerous wastes. 

It is these issues that will be played out in the real-world context of climate change. There is an exquisite paradox here. While nuclear power is hubristically presented as the ‘solution’ to climate change, the changing climate becomes its nemesis on the low-lying shores of eastern England. 

[…]

Read more.

This entry was posted in *English and tagged , , . Bookmark the permalink.

Leave a Reply