Skip to content


Turn down the dose via University of Victoria News

Lower-energy radiation could increase access to common cancer treatment


Every year, more than 200,000 Canadians develop cancer, with radiation therapy recommended for almost half those cases. The research of University of Victoria medical physicist Magdalena Bazalova-Carter is striving to improve access and effectiveness of that vital therapy while reducing its harms.

Radiation requires extremely expensive machines housed in specially built rooms to contain the harmful radiation waves. Unfortunately, both those factors make the treatment very costly, and significantly limit its availability even in middle-income countries. 

Bazalova-Carter has been working with a US radiation oncologist for the past seven years to develop a new kind of X-ray machine. A prototype resembling a CT scan is being built in Nevada, and a scaled-down version of the machine is being assembled in the UVic lab where Bazalova-Carter conducts her research, the X-ray Cancer Imaging and Therapy Experimental Lab (XCITE).

“What we are proposing is a lower-energy beam that would be delivered from multiple directions at the same time,” says Bazalova-Carter, who is working with graduate student Dylan Breitkreutz on the project. “There’s a larger volume of irradiated tissue but at a lower dose, which should have little impact on healthy tissues, while the tumour receives the same dose.”

Better still, the new machine—which could be commercially available within five years—can be built for a fraction of the cost of high-voltage X-ray equipment. That’s important in light of the need for greater access to radiation therapy around the world, says Bazalova-Carter, Canada Research Chair in Medical Physics.

The high-energy machines currently used for treatment sell for upwards of $5 million each. They require rooms with two-metre-thick concrete walls to protect others from the impact of radiation waves, and a team of engineers to maintain them. 

The machine Bazalova-Carter is helping to develop is expected to cost one-tenth of that. Its energy emissions can be contained with nothing more than one-centimetre-thick lead walls.

「。。。」

 

 

 

 

Read more.

Posted in *English.

Tagged with .


0 Responses

Stay in touch with the conversation, subscribe to the RSS feed for comments on this post.



Some HTML is OK

or, reply to this post via trackback.