Concerns about a potential, and so far unsubstantiated, nuclear “incident”, reportedly in the vicinity of the Arctic circle, spread in the past week after trace amounts of radioactive Iodine-131 of unknown origin were detected in January over large areas in Europe according to a report by the Institute for Radiological Protection and Nuclear Safety, the French national public expert in nuclear and radiological risks. Since the isotope has a half-life of only eight days, the detection is an indication of a rather recent release. As the Barents Observer adds, “where the radioactivity is coming from is still a mystery.”
The air filter station at Svanhovd – located a few hundred meters from Norway’s border to Russia’s Kola Peninsula in the north – was the first to measure small amounts of the radioactive Ionide-131 in the second week of January. Shortly thereafter, the same Iodine-131 isotope was measured in Rovaniemi in Finnish Lapland. Within the next two weeks, traces of radioactivity, although in tiny amounts, were measured in Poland, Czech Republic, Germany, France and Spain.
Norway was the first to measure the radioactivity, but France was the first to officially inform the public about it.
“Iodine-131 a radionuclide of anthropogenic origin, has recently been detected in tiny amounts in the ground-level atmosphere in Europe. The preliminary report states it was first found during week 2 of January 2017 in northern Norway. Iodine-131 was also detected in Finland, Poland, Czech Republic, Germany, France and Spain, until the end of January”, the official French Institute de Radioprotection et de Süreté Nucléaire (IRSN) wrote in a press release.
[…]
But No Explanation Where The Radiation Came From
Finnish authorities also underscores that the levels measured are far from concentrations that could have any effect on human health. Neither STUK, nor IRSN speculate in the origin of the released Iodine-131.
Astrid Liland can’t either explain the origin of the radioactivity. “It was rough weather in the period when the measurements were made, so we can’t trace the release back to a particular location. Measurements from several places in Europe might indicate it comes from Eastern Europe,” Liland explains. “Increased levels of radioactive iodine in air were made in northern-Norway, northern-Finland and Poland in week two, and in other European countries the following two weeks, Astrid Liland says.
As the Barents Observers adds, Iodine-131 in the air could come from an incident with a nuclear reactor. The isotope is also widely used in medicine and for that purpose; many countries around the globe produce it.
All operators of nuclear reactors or institutions using Iodine-131 for medical purposes have detectors for external releases of radioactivity. In other words, as the Observer concludes, “Someone out there knows why the radioactivity was spread over larger areas of Europe.”
Nuclear installations in northwastern Europe, were the radioactivity was first discovered, includes nuclear power plants in Finland, Sweden and Russia, in addition to nuclear powered vessels on Russia’s Kola Peninsula and White Sea area. The source could as well come from even further away installations.
Read more at Concerns Grow About A Nuclear “Incident” In Europe After Spike In Radioactive Iodine Levels