Vienna, Austria – 9 May 2017: A study in 65 countries has revealed low adoption of International Atomic Energy Agency recommendations to reduce nuclear cardiology radiation exposure. The research is presented today at ICNC 2017 by Dr Edward Hulten, a cardiologist at the Walter Reed National Military Medical Center, Bethesda, USA.1
Nuclear cardiology uses small amounts of radioactive tracers which are injected into the veins and taken up by the heart. A gamma camera images the radiation from the tracer. The cardiac images are used to measure the heart size and function, identify coronary heart disease, and predict the risk of a heart attack.
[…]
“Concerns have been raised about tests, including nuclear cardiology, that expose patients to ionising medical radiation,” he continued. “Medical radiation potentially raises the lifetime risk of cancer which is important for all patients, especially younger patients or when considering additional radiation over time from further medical studies.”
A goal of 9 mSv or less radiation exposure per scan was recommended by the American Society of Nuclear Cardiology (ASNC) in 2010. It was noted in a 2016 International Atomic Energy Agency (IAEA) nuclear cardiology guideline but not formally endorsed as a recommendation.2, 3
[…]
There was low adherence overall, with the majority of sites implementing less than half of the quality metrics.
When the researchers performed multivariable logistic regression analysis, they found that the practices most strongly associated with achieving a 9 mSv or less scan were the use of stress or rest only imaging, avoiding thallium, and use of camera technologies to reduce radiation dose.
Dr Hulten said: “When the 9 mSv recommendation was made in 2010 it was suggested that it should be achieved in 50% of scans by 2014. The INCAPS survey shows that there is still work to do. It is possible to reduce radiation exposure with existing techniques. Cadmium zinc telluride (CZT) cameras are more sensitive and allow for reduced dose scanning. With certain tracers you can achieve 1 mSv or less. But some scans use more than 30 mSv, so there is huge variability.”
[…]
Read more.