A grim reality: Living longterm in radioactively contaminated areas damages our health via Beyond Nuclear International

By Cindy Folkers

A growing body of evidence supports a grim reality: that living in radioactively contaminated areas over multiple years results in harmful health impacts, particularly during pregnancy

This is borne out in a recent study by Anton V. Korsakov, Emilia V. Geger, Dmitry G. Lagerev, Leonid I. Pugach and Timothy A. Mousseau, that shows a higher frequency of birth defects amongst people living in Chernobyl-contaminated areas (as opposed to those living in areas considered uncontaminated) in the Bryansk region of Russia.

Because the industry and governments are pushing to spend more money on new nuclear reactors — or to keep the old ones running longer — they have been forced to come up with a deadly workaround to surmount the strongest argument against nuclear power: its potential for catastrophic accidents.

Even the nuclear industry and the governments willing to do its bidding understand that you cannot really clean up after a nuclear catastrophe. For example, in Japan, where the March 2011 nuclear disaster has left lands radioactively contaminated potentially indefinitely, there is an attempt to mandate that people return to live in these areas by claiming there are no “discernible” health impacts from doing so. 

Bodies that are supposed to protect health and regulate the nuclear industry, including the U.S. Environmental Protection Agency, the International Commission on Radiological Protection and Nuclear Regulatory Commission are raising recommended public exposure limits, considering halting evacuations from radiation releases, and encouraging people to live on, and eat from, contaminated land.  

The public justification for continued nuclear energy use is, ostensibly, to address the  climate crisis. The reality is more likely a desperate last-ditch effort by the nuclear industry to remain relevant, while in some countries the nuclear energy agenda remains inextricably linked to nuclear weapon programs.

[…]

The recent joint study, whose implementation, says Korsakov, would not have happened without the support and efforts of co-author Mousseau, found that birth defects like polydactyly (having more than five fingers or toes), and multiple congenital malformations (including those that are appearing for the first time — called de novo), were “significantly higher… in newborns in regions with elevated radioactive, chemical and combined contamination.” 

Uniquely, Korsakov also examines areas contaminated by both Chernobyl radioactivity and industrial chemicals. Multiple congenital malformations (MCM) were much higher in areas of combined contamination, indicating an additive and potentially synergistic effect between pollutants for these birth defects. 

Congenital malformations (CM) are thought to originate in the first trimester of pregnancy and represent a main cause of global disease burden. They are considered “indicators of adverse factors in the environment,” including radioactive pollution, and can afflict numerous organs (heart, brain, lungs, bones, intestines) with physical abnormalities and metabolic disorders. Counted among these are clubfoot, hernias, heart and neural tube defects, cleft palate and lip, and Down syndrome. 

[…]

As the Bryansk study authors point out, “[n]early all types of hereditary defects can be found at doses as low a [sic] 1–10 mSv indicating that current radiation risk models are inadequate for low dose environments.” 

In comparison, Japan and the U.S. maintain that there is little risk to resettling or inhabiting areas contaminated by nuclear catastrophe where estimated doses would range from 5-20 mSv/year. Yet harm was found among Bryansk populations exposed to doses far lower than the much higher ones proclaimed “livable” by nuclear proponents. 

[…]

Korsakov et al. point to yet another explanation for the disconnect — the assumption that dose reconstruction models properly fit all realistic exposures. When experts estimate doses they often do so without adequate knowledge of local culture and habits. Therefore, they fail to capture variations in exposure pathways, creating enormous errors in dose reconstruction. As a starting point, radiation science would be better served by directly measuring contamination levels where people actually live, play, breathe and eat. 

[…]

Read more.

This entry was posted in *English and tagged , , , . Bookmark the permalink.

Leave a Reply