By M.V. Ramana
- On December 13, the US Department of Energy announced that the National Ignition Facility had reached a “milestone”: the achievement of “ignition” in nuclear fusion earlier in the month.
- While the step has been described as a milestone in clean energy, generating electricity commercially or at an industrial scale through fusion is likely unattainable in any realistic sense – at least within the lifetimes of most readers of this article.
- The main utility that the facility offers nuclear weapons designers and planners is by providing a greater understanding of the underlying science and modernising these weapons.
On December 13, the US Department of Energy (DOE) announced that the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory had reached a “milestone”: the achievement of “ignition” in nuclear fusion earlier in the month. That announcement was hailed by many as a step into a fossil fuel-free energy future. US Senate majority leader Charles Schumer, for example, claimed that we were “on the precipice of a future no longer reliant on fossil fuels but instead powered by new clean fusion energy”.
But in truth, generating electrical power from fusion commercially or at an industrial scale is likely unattainable in any realistic sense, at least within the lifetimes of most readers of this article. At the same time, this experiment will contribute far more to US efforts to further develop its terrifyingly destructive nuclear weapons arsenal.
[…]
These incredibly high costs also explain why such announcements are made in the first place: without the excitement created by these hyped-up statements, it would be impossible to get funded for the decades it takes to plan and build these facilities. Conceptual design work on ITER began in 1988.
Of course, that timescale pales in comparison to the time period of the first major announcement about fusion-generated electricity. That took place in 1955 when Homi Bhabha, the architect of India’s nuclear programme, told the first International Conference on Peaceful Uses of Atomic Energy in Geneva:
“I venture to predict that a method will be found for liberating fusion energy in a controlled manner within the next two decades. When that happens the energy problems of the world will have been solved for ever.”
[…]
NIF and nuclear weapons
NIF’s chief purpose is not generating electricity or even finding a way to do so. NIF was set up as part of the Science Based Stockpile Stewardship Program, which was the ransom paid to the US nuclear weapons laboratories for forgoing the right to test after the United States signed the Comprehensive Test Ban Treaty. This is a purpose NIF can start fulfilling without ever generating any electricity.
The main utility that NIF offers nuclear weapons designers and planners is by providing a greater understanding of the underlying science. As the Lawrence Livermore National Laboratory’s webpage proudly proclaims:
“NIF’s high energy density and inertial confinement fusion experiments, coupled with the increasingly sophisticated simulations available from some of the world’s most powerful supercomputers, increase our understanding of weapon physics, including the properties and survivability of weapons-relevant materials”.
Another 1995 document explains that NIF would provide lots of “neutrons with the very short pulse widths characteristic of low-yield nuclear intercepts, that can be used to establish lethal criteria for chemical/biological agents and nuclear warhead targets”. In other words, NIF could help with modelling the use of nuclear weapons to destroy chemical, biological and nuclear weapons.
NIF might even help with developing new kinds of nuclear weapons. Back in 1998, Arjun Makhijani, who has a PhD in nuclear fusion, and Hisham Zeriffi suggested that NIF could help with the development of pure fusion weapons, i.e., thermonuclear weapons that do not need a nuclear fission primary. If that were to happen – and that is a big if, as is the case with most fusion activities – that would obviate the need for highly enriched uranium or plutonium, which are currently the main obstacles to making nuclear weapons.
NIF, then, is a way to continue investment into modernising nuclear weapons, albeit without explosive tests, and dressing it up as a means to produce “clean” energy. The managers of NIF and the larger laboratory in which it is housed are careful to highlight different promises based on the circumstance they are speaking at. When anthropologist Hugh Gusterson asked a senior official about the purpose of the laser programme, the official replied, “It depends who I’m talking to…One moment it’s an energy program, the next it’s a weapons programme. It just depends on the audience”.
Dangerous distraction
The tremendous media attention paid to NIF and ignition amounts to a distraction – and a dangerous one at that.[…]
But nuclear fusion falls even shorter when we consider climate change, and the need to cut carbon emissions drastically and rapidly. The Intergovernmental Panel on Climate Change has warned that to stop irreversible damage from climate change, the world will have to achieve zero net emissions by 2050. Given this relatively short timeline to turn around our economies and ways of living, spending billions of dollars on this sure-to-fail attempt to develop fusion power only amounts to diverting money and resources away from proven and safer renewable energy sources and associated technologies. Investment in research and development into fusion is bad news for the climate.
In the meanwhile, nuclear fusion experiments like those at NIF will further the risk posed by the nuclear arsenal of the US, and, indirectly, the arsenals of the eight other countries known to possess nuclear weapons. The world has been lucky so far to avoid nuclear war. But this luck will not hold up forever. We need nuclear weapons abolition, but programmes like NIF offer nuclear weapons modernisation, which is just a means to assure destruction forever.
Read more.