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Abstract

Natural language inference (NLI) is a task to in-
fer the relationship between a premise and a hy-
pothesis (e.g., entailment, neutral, or contradic-
tion), and transformer-based models perform
well on current NLI datasets such as MNLI
and SNLI. Nevertheless, given the linguistic
complexity of the large-scale datasets, it re-
mains controversial whether these models can
truly infer the relationship between sentences
or they simply guess the answer via shallow
heuristics. Here, we introduce a controlled
evaluation set called Simple Pair to test the
basic sentence inference ability of NLI mod-
els using sentences with syntactically simple
structures. Three popular transformer-based
models, i.e., BERT, RoBERTa, and DeBERTa,
are employed. We find that these models fine-
tuned on MNLI or SNLI perform very poorly
on Simple Pair (< 35.4% accuracy). Further
analyses reveal event coreference and compo-
sitional binding problems in these models. To
improve the model performance, we augment
the training set, i.e., MNLI or SNLI, with a
few examples constructed based on Simple Pair
(∼ 1% of the size of the original SNLI/MNLI
training sets). Models fine-tuned on the aug-
mented training set maintain high performance
on MNLI/SNLI and perform very well on Sim-
ple Pair (∼100% accuracy). Furthermore, the
positive performance of the augmented train-
ing models can transfer to more complex ex-
amples constructed based on sentences from
MNLI and SNLI. Taken together, the current
work shows that (1) models achieving high ac-
curacy on mainstream large-scale datasets still
lack the capacity to draw accurate inferences
on simple sentences, and (2) augmenting main-
stream datasets with a small number of target
simple sentences can effectively improve model
performance.

∗ Corresponding author: Nai Ding

1 Introduction

Natural language inference (NLI), also known as
recognizing textual entailment (RTE), is a basic
task to test the semantic inference ability of natural
language processing (NLP) models (Cooper et al.,
1996; Dagan et al., 2005; Poliak, 2020). The NLI
task concerns the relationship between a pair of sen-
tences, i.e., a premise and a hypothesis (Naik et al.,
2018; Ravichander et al., 2019; Richardson et al.,
2020; Jeretic et al., 2020). In recent years, a number
of datasets have been developed to train models for
the NLI task, such as Stanford NLI (SNLI) (Bow-
man et al., 2015) and Multi-genre NLI (MNLI)
(Williams et al., 2018), and transformer-based deep
neural network models have achieved high accu-
racy on these datasets (Nangia and Bowman, 2019;
Poliak, 2020). The high accuracy of NLI mod-
els could be taken to suggest that these models
already have the ability to interpret the meaning of
sentences and generate semantic inference. Nev-
ertheless, recent evidence shows that NLI models
may have just guessed the answer based on statisti-
cal biases hidden in the datasets (Gururangan et al.,
2018; Clark et al., 2019). It also has been shown
that models can achieve high accuracy even when
the words in premise/hypothesis are shuffled (Sinha
et al., 2021), casting further doubts on whether the
NLI models can truly infer the meaning of sen-
tence pairs or simply guess the answer via shallow
heuristics (Naik et al., 2018).

To understand the true capacity of the current
models, one reasonable approach is to generate
more complex cases to break the shallow heuris-
tics and accordingly identify the model defects.
There is a growing body of recent NLI work that
constructs syntactically/semantically sophisticated
material for NLI datasets (Welleck et al., 2019; Nie
et al., 2020; Liu et al., 2021). Training and testing
models on difficult and challenging material are
valuable since this exercise pushes the boundaries



of how much NLI models can cope with linguistic
complexity (Nie et al., 2020; Ravichander et al.,
2019). However, the complexity of the datasets
could also potentially hinder an explicit picture
of what specific linguistic features the models can
learn and more importantly what they cannot learn.
Furthermore, the focus on complex material im-
plicitly assumes that the current NLI models have
the capacity to understand simple sentences and
consequently perform the NLI task accurately on
simple sentences.

In this work, departing from the common prac-
tice of constructing complex material, we intro-
duce a controlled evaluation set called Simple
Pair, which includes a large number of syntacti-
cally/semantically simple sentences following a set
of systematic design features. The goal of the cur-
rent study is two-fold. First, we ask whether the
current NLI models have the ability to correctly
infer the relationship between simple sentences in
Simple Pair. If not, the failure patterns on these
simple cases can more effectively help us iden-
tify the basic linguistic operation(s) that the current
models fail to capture, and illuminate shortcomings
from inappropriate model biases. Second, we ask
whether the weakness of the models can be over-
come using simple training sentences constructed
based on Simple Pair. If so, the seemingly basic
linguistic information provided by these simple
cases can serve as an important supplement for the
existent datasets, and robustly improve the model
performance on NLI tasks.

To preview, we tested three popular transformer-
based models, i.e., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and DeBERTa (He
et al., 2021), which were respectively fine-tuned
on 2 widely-used datasets, i.e., the MNLI and the
SNLI datasets. We found that these models were by
and large inaccurate in drawing inference relations
on our datasets, indicating severe model problems
such as event coreference biases and compositional
binding failures. To address these problems, we
fine-tuned each model on the MNLI or SNLI aug-
mented with a few samples constructed based on
sentences in Simple Pair. The small number of
samples can indeed significantly improve model
performance on Simple Pair, and the positive im-
provement can extend to more complex and chal-
lenging cases.

2 Methods

2.1 NLI Dataset and Pre-trained Models

We employed three pre-trained language models,
i.e., BERT, RoBERTa, and DeBERTa to perform
the NLI task. For all models, we used both the
base (b) and large (l) versions. We built our models
using Huggingface (Wolf et al., 2020). The models
were separately fine-tuned based on 2 mainstream
datasets, i.e., MNLI and SNLI. For the 2 datasets
we used, the relationship between a premise and a
hypothesis could be entailment, contradiction, or
neutral. The accuracy was evaluated by the pro-
portion of premise-hypothesis pairs for which the
inference relation was correctly identified. The
parameters for fine-tuning were adopted from pre-
vious studies, and the test accuracy was higher than
83.9% (shown in Appendix Table 1). For each
sentence pair, the input to the models was [CLS,
premise, SEP, hypothesis, SEP]. The concatenated
sequence was encoded through the models and the
output embedding of CLS was fed into a 3-way
softmax classifier. The classifier calculated a score
for each class through a linear transformer matrix
and softmax function (Devlin et al., 2019).

2.2 Dataset Construction

2.2.1 Simple Pair set

To test the basic sentence inference ability of NLI
models, we constructed a Simple Pair test set using
syntactically simple sentences as shown in Figure
1. The test set was further divided into a simple-
sentence set and a conjunction-sentence set. For
the simple-sentence set, the premise was a short
sentence constructed using one of two templates
(see Figure 1). One template created N-is-A sen-
tences, where [N] was a noun and [A] was an ad-
jective. The noun was selected from 5 categories,
i.e., fruits (N = 40), animals (N = 90), human (N
= 100), names (N = 100), and objects (N = 90),
and each noun was mapped to a compatible adjec-
tive (N = 25, 30, 55, 55, and 28 for nouns from
the fruit, animal, human, name, and object cate-
gories, respectively). The other template created
SVO sentences. The subject and object were se-
lected from the same 5 categories of nouns used in
N-is-A sentences, and they were randomly paired
with a compatible verb (N = 20). Following the
templates in Figure 1, each premise was then paired
with a number of hypotheses that all have a neu-
tral relationship with the premise. In particular,



Figure 1: Construction of the Simple Pair set.

each N-is-A type of premise was paired with 6 hy-
potheses (3 affirmative sentences and 3 negative
sentences), and 24000 premise-hypothesis pairs
(4000 premises × 6 hypotheses) were created in
total. Each SVO premise was paired with 8 hy-
potheses (4 affirmative sentences and 4 negative
sentences), and 32000 premise-hypothesis pairs
(4000 premises × 8 hypotheses) were created. No
premise-hypothesis pair in the simple-sentence set
contained antonyms or synonyms.

In addition to the above neutral premise-
hypothesis pairs, to test the event coreference
bias of models fine-tuned on MNLI or SNLI, we
introduced premise-relevant hypotheses into the
simple-sentence set to create a condition where
a part of the information of the hypothesis was
in line with its premise. As is shown in Fig-
ure 1, the premise-relevant hypotheses were con-
structed by conjoining the original hypothesis
with its premise. As a contrary condition, we
also created premise-irrelevant hypotheses by con-
joining the original hypothesis with a new sen-
tence which was irrelevant with its premise. The
two sentences in the premise-relevant/premise-

irrelevant hypotheses were conjoined together
in a random order, with or without the word
“and”. This procedure resulted in 12000 premise-
hypothesis pairs (1000 premise × 6 hypothe-
ses × premise-relevant/premise-irrelevant cases)
for N-is-A type and 16000 premise-hypothesis
pairs (1000 premise × 8 hypotheses × premise-
relevant/premise-irrelevant cases) for SVO type.
For all these pairs, the relationship between each
premise-hypothesis pair is also in principle neutral.

For the conjunction-sentence set, the premise
was constructed by conjoining two simple sen-
tences using one of four possible templates (see
Figure 1). Each premise was paired with 4 hypothe-
ses (2 affirmative sentences and 2 negative sen-
tences). In total, 16000 premise-hypothesis pairs
(4000 premises × 4 hypotheses) were created for
the premise constructed using each template. Simi-
lar to the simple-sentence set, the relationship be-
tween all premise-hypothesis pairs was controlled
as being neutral. Human annotation was acquired
for a part of samples in Simple Pair to confirm the
neutral relationship between premise-hypothesis
pairs (see section 2.3).



Figure 2: Construction of the Extended Pair set.

2.2.2 Extended Pair set

To test the generalization ability of models fine-
tuned on augmented MNLI/SNLI, we created an
Extended Pair test set using more complex sen-
tences originating from MNLI and SNLI. The
test set was also divided into an extended-simple
set and an extended-conjunction set (see Figure
2). For the extended-simple set, we randomly
paired premises and hypotheses in MNLI and SNLI
test sets, with the constraint that none of the new
premise-hypothesis pairs in our test set overlapped
with the pairs in the original datasets. Specifically,
2000 premises were selected (500 from the MNLI-
matched, 500 from MNLI-mismatched, and 1000
from SNLI), and each premise was paired with 3
hypotheses (1 from MNLI-matched, 1 from MNLI-
mismatched, and 1 from SNLI). This procedure
resulted in 6000 premise-hypothesis pairs (2000
premises × 3 hypotheses) in total. Since the pairing
between a premise and a hypothesis is random, the
relationship between them should be neutral.

For the extended-conjunction set, we randomly
selected 60 irrelevant premise sentences from
MNLI and SNLI test sets (15 from MNLI-matched,
15 from MNLI-mismatched, and 30 from SNLI),
with the constraint that the subject was not a pro-
noun in each sentence. Following the conjunction
templates of Simple Pair, the premise was con-
structed by randomly conjoining 2 of the 60 sen-
tences, and the hypotheses were created by break-
ing the compositional binding relation between a
subject and a predicate in the premise (see Fig-
ure 2). This procedure resulted in 6000 premise-
hypotheses pairs (375 premises × 4 hypotheses ×
4 templates) in total. Like the extended-simple
set, we expected the relationship for the premise-
hypothesis pairs in the extended-conjunction set
to be neutral as well. Human annotation was also

acquired for a part of samples in Extended Pair to
confirm the neutral relationship between premise-
hypothesis pairs (see section 2.3).

2.3 Human Annotation

A large number of hypotheses in our datasets were
identified as entailment or contradiction by the
models fine-tuned on MNLI and SNLI (see Re-
sults). To test whether most of these premise-
hypothesis pairs were truly neutral as we ex-
pected, we collected human annotations for part
of the data. In total, we randomly selected
200 premise-hypothesis pairs from Simple Pair
(50 from the simple-sentence set, 50 from the
conjunction-sentence set, 50 from the premise-
relevant set, and 50 from the premise-irrelevant set),
and 100 premise-hypothesis pairs from Extended
Pair (50 from the extended-simple set, and 50
from the extended-conjunction set). These premise-
hypothesis pairs were listed in Supplementary Ma-
terials.

Five human annotators were presented with the
pairs of sentences and asked to label the relation-
ship between the two sentences, i.e., entailment,
contradiction, or neutral. Since the annotation
guideline might affect annotators’ decisions in the
annotation process (Bowman et al., 2015; Glock-
ner et al., 2018; Gururangan et al., 2018), we di-
rectly used premise-hypothesis pairs from MNLI
and SNLI as examples for the annotators. The
examples presented 9 premise-hypothesis pairs (3
premises × E/N/C hypotheses) randomly selected
from MNLI and SNLI sets, respectively. For qual-
ity control, we also mixed 4 non-neutral examples
(2 entailment and 2 contradiction) into the samples
of each test set. All five annotators correctly identi-
fied these samples. After the annotation, the ground
truth label was obtained using a majority vote from



the five annotators. The premise-hypothesis pairs
from Simple Pair and Extended Pair were more fre-
quently classified as neutral by human annotators.
Appendix Table 2 shows the summary statistics of
ground truth labels.

3 Results

3.1 Model Performance on Simple Pair

For the Simple Pair set, we constructed premise-
hypothesis pairs using syntactically simple sen-
tences and simplified the relationship between the
premise and hypothesis by making them neutral.
However, all models fine-tuned on MNLI or SNLI
failed to correctly infer the relationship between the
premise-hypothesis pairs. The model performance
on Simple Pair is shown in Tables 1 and 3, for the
simple-sentence set and the conjunction-sentence
set, respectively.

For the simple-sentence set, we constructed neu-
tral hypotheses by replacing at least one constituent
in the premise (e.g., [N] or [A] in a N-is-A sen-
tence) with a different word. As is shown in Table
1, models fine-tuned on MNLI or SNLI performed
poorly on the simple-sentence set (< 28.3% accu-
racy). It was found that these models identified the
relationship between a large proportion of premise-
hypothesis pairs as contradiction, especially when
the subjects were different between the hypothesis
and the premise. For example, the models judged
that “The apple is expensive” contradicts “The ba-
nana is expensive”. Similarly, the model judged
that “The professor saw the dog” contradicts “The
student saw the dog”.

Previous works concerning SNLI and MNLI
datasets consistently mentioned the issue of
event coreference, which could confound neutral
and contradictory relationships between premise-
hypothesis pairs (Bowman et al., 2015; Williams
et al., 2018). It is possible that the consistent model
bias for “contradiction” on our simple-sentence
set might be attributed to the bias of event coref-
erence originating from SNLI and MNLI. To test
this possibility, we introduced premise-relevant hy-
potheses and premise-irrelevant hypotheses into
the simple-sentence set (see Methods for details).
For the premise-relevant hypothesis, the sentence
described the same event as its premise, with the
addition of irrelevant information from the orig-
inal hypothesis, e.g., the premise “The apple is
expensive” was paired with the hypothesis “The
apple is expensive and the orange is juicy”. For

the premise-irrelevant hypothesis, in contrast, the
sentence described an event totally irrelevant with
the premise, e.g., the premise “The apple is expen-
sive” was paired with the hypothesis “The banana
is sweet and the orange is juicy”. As is shown in
Table 2, it was found that the model accuracy was
significantly increased when the original hypothe-
sis was replaced by a premise-relevant hypothesis
rather than a premise-irrelevant hypothesis. The
results indicated that models fine-tuned on SNLI
or MNLI had a severe event coreference bias: Only
when the premise and hypothesis contained the
same event could the neutral hypotheses be cor-
rectly identified.

For the conjunction-sentence set, we constructed
neutral hypotheses by breaking the compositional
binding relation between a subject and a predicate
in the premise. As is shown in Table 3, the models
fine-tuned on MNLI or SNLI performed poorly on
the conjunction-sentence set (< 35.4% accuracy).
Similar to the simple-sentence set, the DeBERTa
models identified a large proportion of these unre-
lated statements as being contradictory. In addition,
the BERT and RoBERTa models also revealed a
new problem. They failed to understand the fun-
damental compositional binding relation between
a subject and a predicate. For example, the mod-
els consistently made the incorrect judgment that
“The apple is expensive and the orange is sweet”
entails “The apple is sweet”. This suggests that the
models are confused as to which subject should
be paired with which predicate (i.e. the compo-
sitional binding failure). The models also judged
the same premise to contradict “The apple is not
sweet”, again suggesting a composition problem:
Once the models had wrongly allowed the compo-
sition of “The apple is sweet” based on the premise,
this inference would now be in contradiction to
the hypothesis “The apple is not sweet”, assum-
ing that the models have the ability to distinguish
“sweet” and “not sweet” as describing two opposite
properties.

We also introduced negation into the premises
to test if models could bind “not” with a positive
predicate to form a more complex predicate. These
conditions again revealed the composition failure
problem on the BERT and RoBERTa models (see
Table 3). For example, when the premise was “The
apple is expensive and the orange is not sweet”,
the models tended to judge that the premise en-
tailed “The apple is not sweet” but contradicted



Table 1: Model performance on the simple-sentence set in Simple Pair. In Simple Pair, each premise is paired with
a few hypotheses and each hypothesis is shown in a column. The percent of premise-hypothesis pairs identified as
entailment, neutral, and contradiction were shown in blue, red, and yellow, respectively. This table only shows the
results for N-is-A sentences and the results for SVO sentences are shown in the Appendix Table 3.

Table 2: Model performance on simple-sentence set when the original hypothesis was replaced by premise-relevant
hypothesis or premise-irrelevant hypothesis. The numbers in the parenthesis show the change in performance
compared with the model performance on the original simple-sentence set.

“The orange is not expensive”.This suggests that the
models can correctly combine “not” with “sweet”
to form a new predicate, but they still freely (and
wrongly) paired up the subject nouns and the predi-
cates in the premise.

3.2 Improving the Model Performance using
Simple Pair

To recap, the test on Simple Pair identified severe
limitations with the models fine-tuned on MNLI or
SNLI, i.e., these models demonstrated substantial
event coreference bias and compositional binding
problem. We next investigated whether the Simple
Pair set could be used to improve the performance
of models fine-tuned on MNLI or SNLI. Specifi-
cally, we fine-tuned each model on the MNLI or
SNLI training set augmented with a set constructed
based on Simple Pair but containing no identical
samples that appeared in Simple Pair. The label
distribution of these samples was balanced, i.e., we
also created entailment and contradictory hypothe-
ses in the augmented set (see Appendix Table 5).
Our additions comprised 6000 examples, roughly
1.5% and 1% of the size of the original MNLI and
SNLI training set. The parameters are shown in
Appendix Table 1. In general, all models main-
tained high performance. Some of the models, e.g.,
RoBERTa-large and DeBERTa-large, even got bet-
ter performance on MNLI and SNLI test sets (see
Appendix Table 1). The performance of the mod-

els receiving an augmented fine-tuning process is
shown in Table 4. It was found that the small num-
ber of samples structured based on Simple Pair
can significantly improve model performance on
Simple Pair (close to 100% accuracy).

The positive results of the augmented fine-tuning
process are compatible with the possibility that the
models simply memorized the template of Sim-
ple Pair. Therefore, we created an Extended Pair
set to test the generalization ability for the models
fine-tuned on augmented MNLI/SNLI. In Extended
Pair, all premise-hypothesis pairs were constructed
using more complex sentences randomly selected
from MNLI and SNLI. The relationship between
each premise-hypothesis pair was controlled to be
neutral, and they were designed in such as a way to
also induce the event coreference bias and compo-
sitional binding problem. The model performance
on Extended Pair is shown in Table 5.

For the extended-simple set, a premise was
paired with a randomly chosen hypothesis, and
therefore most of these premise-hypothesis pairs
would not describe the same entity or event. As ex-
pected, the models fine-tuned on MNLI or SNLI in-
accurately identified a large proportion of premise-
hypothesis pairs as contradiction. The error rate of
these models was over 32.1%. The performance
of the models fine-tuned on augmented MNLI or
SNLI was generally improved. The exceptions
were that the DeBERTa-base model fine-tuned



Table 3: Model performance on the conjunction-sentence set of Simple Pair. This table only shows the results for
N-is-A sentences and the results for SVO sentences are shown in the Appendix Table 4.

Table 4: Performance of models fine-tuned on MNLI or SNLI augmented with Simple Pair. The numbers in the
parenthesis show the change in performance compared with the models only fine-tuned on MNLI or SNLI.

on augmented MNLI, and BERT/RoBERTa-base
models fine-tuned on augmented SNLI performed
worse on the extended-simple set.

For the extended-conjunction set, each premise
was created by randomly conjoining two sentences
from MNLI and SNLI, and the neutral hypothesis
was created by breaking the compositional binding
relation between a subject and a predicate in the
premise. The models fine-tuned on MNLI or SNLI
failed on the extended-conjunction set. The error
rate of these models was over 85.1%. However, all
models fine-tuned on augmented MNLI or SNLI
significantly improved in performance. Compared
with the models fine-tuned on MNLI and SNLI,
the improvement of accuracy rate was up to 56.9%
and 47.7% for the models fine-tuned on augmented
MNLI and SNLI respectively.

We also expected that the augmented fine-tuning
process could enhance the basic inference capacity
of the NLI models and generalize to samples with
other syntactically simple structures. To further

evaluate the generalization ability of the augmented
training models, we used an NLI diagnostic dataset,
called HANS (McCoy et al., 2019). The HANS
dataset probed various syntactic heuristics from
the superficial similarity (i.e., word overlap) be-
tween the premise and hypothesis. Therefore, the
HANS dataset was similar to the Simple Pair and
Extended Pair sets in the property of word overlap,
and its samples with diverse syntactic structures
were appropriate to evaluate the generalization abil-
ity of the augmented training models. Three nested
heuristics, i.e., the lexical overlap, the subsequence,
and the constituent heuristics, were measured in
HANS. Given that the models fine-tuned on MNLI
or SNLI had achieved high accuracy on the lexical
overlap set (up to 98.5% accuracy), we employed
the subsequence and constituent sets to evaluate
the augmented training models. In the evalua-
tion process, we collapsed the model outputs of
neutral and contradiction labels into a single non-
entailment label, following McCoy et al. (2019).



Table 5: Model Performance on Extended Pair set. The numbers in the parenthesis show the change in performance
comparing the models fine-tuned on augmented MNLI or SNLI with the models only fine-tuned on MNLI or SNLI.

The model performance is shown in Appendix Ta-
ble 6. Through the augmented fine-tuning process,
the model performance was generally improved on
the subsequence and constituent sets of HANS (up
to a 13.3% increase).

4 Related work

Transformer-based models have achieved human-
level performance on many NLI datasets such as
MNLI and SNLI (Devlin et al., 2019; Lan et al.,
2019; Liu et al., 2019; Nangia and Bowman, 2019).
The good performance seems to suggest that these
models have the ability to interpret sentences in
the current datasets and generate correct inferences.
Accordingly, follow-up works aim at constructing
even more challenging datasets to train and test the
models (Nie et al., 2020; Liu et al., 2021). There
is also a growing body of works that constructs
datasets to test more fine-grained linguistically mo-
tivated inference patterns such as pragmatic infer-
ences and numerical reasoning (Jeretic et al., 2020;
Ravichander et al., 2019) or correlates model errors
with well-defined linguistic phenomena (Yanaka
et al., 2019; Geiger et al., 2020; Yanaka et al., 2020;
Hossain et al., 2022), with the purpose to identify
whether models have trouble making certain types
of inferences. Compared with these studies, the
current work take a different approach: By inten-
tionally reducing the difficulty of the test material,
we aim to uncover whether models can truly infer
the relation between simple sentences. The results
show models perform poorly inferring the relation
between basic N-is-A and SVO sentences.

The current work differs from previous studies
in two major aspects. First, we constructed a large
set of simple sentences, i.e., Simple Pair, to test and
enhance models. Most current datasets are com-
posed of syntactically complicated sentences and
it is usually difficult to isolate specific linguistic
constructs from these sentences (Naik et al., 2018).
In our study, the sentences are simple enough so

that the mechanisms to understand (or fail to un-
derstand) them are relatively transparent. Second,
we extended the current mainstream datasets, i.e.,
MNLI and SNLI, to test the generalization ability
of models. In Extended Pair, the original premise-
hypothesis pairs in MNLI/SNLI are broken and
recombined in a random way. It is an effective
method to tackle the issue of potential statistical
biases in NLI datasets, since most heuristics origi-
nating in the original datasets are rendered useless
under the new test conditions where all the sen-
tences are unrelated. Relatedly, the study of Wang
et al. (2019) switched the premise and hypothesis,
and used the switched pairs to test NLI models.
Our method can be combined with the method by
Wang et al. (2019) to further reduce the inherent
statistical biases in NLI datasets.

Many studies have discussed the potential risk of
overfitting on benchmark datasets, and emphasized
the need to more accurately evaluate the true lan-
guage capacity of various models (Smith, 2012; Tal-
man and Chatzikyriakidis, 2019; Sinha et al., 2021;
Poliak, 2020). For example, it has been shown
that models can guess the relationship between a
premise and a hypothesis with an accuracy higher
than the chance level, even when just considering
the hypothesis (Gururangan et al., 2018; Poliak
et al., 2018). Here, by creating premise-hypothesis
pairs characterized by neutral relationship, we pro-
vide additional evidence that existing models are
severely over-fitted: (1) All models tend to judge
the relationship between two unrelated simple sen-
tences to be contradictory, which suggests the event
coreference bias, and (2) some of them have sub-
stantial difficulty solving the compositional binding
relations for conjunction sentences.

Regarding the event coreference bias, many stud-
ies have mentioned the event coreference problem
in NLI tasks (Bowman et al., 2015; Williams et al.,
2018; Glockner et al., 2018; Storks et al., 2019).
Consider the sentence pair “A boat sank in the



Pacific Ocean” and “A boat sank in the Atlantic
Ocean” as an example. The pair could be labeled
as a contradiction if one assumes that the two sen-
tences refer to the same single event, but could also
be reasonably labeled as neutral if they are two
independent events. For the SNLI set, the human
annotators were instructed to judge the relation
between sentences given that the two sentences de-
scribe the same scenario (Bowman et al., 2015).
Hence, sentences that described different entities
or events should be considered as contradiction by
human annotators. For the MNLI set, despite no
strict restrictions for a specific scenario between
premise and hypothesis in each sample, it is still
possible that the annotators adopted a similar an-
notation strategy in MNLI (Williams et al., 2018).
Therefore, the coreference bias is regarded as an
inherent problem in models fine-tuned on SNLI
or MNLI, and no studies, to our knowledge, have
tried to address this problem. In this work, we show
that augmenting SNLI or MNLI with a few samples
from Simple Pair can attenuate the coreference bias
in these models. Regarding the compositional bind-
ing problem, it is surprising that large pre-trained
models, e.g., BERT and RoBERTa, failed to deal
with the fundamental compositional binding rela-
tion between a subject and a predicate. It is possible
that the compositional failures we observed are also
attributed to the inherent biases originating from
MNLI and SNLI, given the model performance
on conjunction sentences can be significantly im-
proved by the augmented fine-tuning process.

5 Conclusion

In summary, since existing models have shown
good performance on large-scale NLI datasets, the
received wisdom is that these models are capable
of doing at least some sophisticated inferences, and
more progress can be made by evaluating them on
even more challenging and complex datasets. The
current work, however, shows that models achiev-
ing good performance on large-scale datasets do
not necessarily generalize to simpler datasets. In
fact, models fine-tuned on MNLI or SNLI generally
have lower than chance level performance when
inferring the relationship between simple sentences.
Nevertheless, the results here show that combining
a few simple examples with large-scale datasets,
e.g., MNLI and SNLI, can significantly increase
the model’s ability to deal with simple test samples
while largely maintaining the performance on origi-

nal test samples. The positive results on simple test
samples can also robustly transfer to improving the
model accuracy on more complex samples. These
results indicated that, in addition to more complex
material, simple and transparent material, such as
Simple Pair, can also serve as a tool for motivating
and measuring progress in NLI tasks.

6 Limitations

In our test sets, we tried to ensure each premise-
hypothesis pair has a neutral relation. One caveat is
that the results of human classification (Appendix
Table 2) showed that the current manipulation did
not completely exclude entailment or contradic-
tory samples in the Simple Pair and Extended Pair
sets. But we note that it is unlikely that the small
amount of entailment and contradictory samples
in the test sets could account for the severe inac-
curacy of NLI models, and we therefore did not
employ more controls on the Simple Pair or Ex-
tended Pair sets. Overall, the current work mainly
revealed the effect of some general biases when
the NLI models were applied to deal with simple
premise-hypothesis pairs characterized by neutral
relationships. Future work could focus on the NLI
model performance on simple sentences character-
ized by entailment or contradictory relationships.

Through our augmented fine-tuning process, the
model performance was generally improved on the
Simple Pair and Extended Pair sets. However, the
performance improvement on the Extended Pair
set was smaller than that on the Simple Pair set
(Table 4 vs. Table 5). We argued that augmenting
MNLI/SNLI with samples from Simple Pair was an
effective way to attenuate shallow heuristics, but it
may not have successfully dealt with deeper biases
(for instance the event coreference bias) originated
from the MNLI/SNLI. To achieve more robust per-
formance on NLI tasks, future work could pursue
more effective examples to augment the existent
large-scale datasets.
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A Appendices 

 

Appendix Table 1: Hyper-parameters for fine-tuning models. The performance of models on MNLI, and 
SNLI test sets is shown in the last row. 
 
 
 
 

 
Appendix Table 2: Human classification for premise-hypothesis pairs randomly selected from the Simple 
Pair and Extended Pair sets. 
 
 
 
 

 
Appendix Table 3: Performance on SVO sentences in the simple-sentence set of Simple Pair. 



 

 

 
Appendix Table 4: Performance on SVO sentences in the conjunction-sentence set of Simple Pair. 

 
 
 
 

 
 

Appendix Table 5: Construction of the augmented examples based on the Simple Pair set. 
  



 

 
 

 
 

Appendix Table 6: Model performance on the HANS dataset. The numbers in the parenthesis show the 
change in performance comparing the models fine-tuned on augmented MNLI or SNLI with the models 
only fine-tuned on MNLI or SNLI.
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