Skip to content


NASA’s Plutonium Problem Could End Deep-Space Exploration via Reader Supported News

n 1977, the Voyager 1 spacecraft left Earth on a five-year mission to explore Jupiter and Saturn. Thirty-six years later, the car-size probe is still exploring, still sending its findings home. It has now put more than 19 billion kilometers between itself and the sun. Last week NASA announced that Voyager 1 had become the first man-made object to reach interstellar space.
[...]
None of this would be possible without the spacecraft’s three batteries filled with plutonium-238. In fact, Most of what humanity knows about the outer planets came back to Earth on plutonium power. Cassini’s ongoing exploration of Saturn, Galileo’s trip to Jupiter, Curiosity’s exploration of the surface of Mars, and the 2015 flyby of Pluto by the New Horizons spacecraft are all fueled by the stuff. The characteristics of this metal’s radioactive decay make it a super-fuel. More importantly, there is no other viable option. Solar power is too weak, chemical batteries don’t last, nuclear fission systems are too heavy. So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.
[...]
So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.

But there’s a problem: We’ve almost run out.
[...]
But it doesn’t have to be that way. The required materials, reactors, and infrastructure are all in place to create plutonium-238 (which, unlike plutonium-239, is practically impossible to use for a nuclear bomb). In fact, the U.S. government recently approved spending about $10 million a year to reconstitute production capabilities the nation shuttered almost two decades ago. In March, the DOE even produced a tiny amount of fresh plutonium inside a nuclear reactor in Tennessee.
[...]
U.S. production came primarily from two nuclear laboratories that created plutonium-238 as a byproduct of making bomb-grade plutonium-239. The Hanford Site in Washington state left the plutonium-238 mixed into a cocktail of nuclear wastes. The Savannah River Site in South Carolina, however, extracted and refined more than 360 pounds during the Cold War to power espionage tools, spy satellites, and dozens of NASA’s pluckiest spacecraft.

By 1988, with the Iron Curtain full of holes, the U.S. and Russia began to dismantle wartime nuclear facilities. Hanford and Savannah River no longer produced any plutonium-238. But Russia continued to harvest the material by processing nuclear reactor fuel at a nuclear industrial complex called Mayak. The Russians sold their first batch, weighing 36 pounds, to the U.S. in 1993 for more than $45,000 per ounce. Russia had become the planet’s sole supplier, but it soon fell behind on orders. In 2009, it reneged on a deal to sell 22 pounds to the U.S.
[...]

Read more.

Posted in *English.

Tagged with , , , , .


One Response

Stay in touch with the conversation, subscribe to the RSS feed for comments on this post.

  1. norma field says

    It’s hard for a layperson to tell from this article what the implications are for proliferation (if plutonium-238 has traditionally been produced as a by-product for making nuclear weapons) and whether the author cares about the harms caused by Hanford and Mayak.



Some HTML is OK

or, reply to this post via trackback.